Families in Which Disjoint Sets Have Large Union

N. ALON ${ }^{a}$ AND P. FRANKL ${ }^{b}$
${ }^{a}$ Department of Mathematics
Tel Aviv University
69978 Tel Aviv, Israel
and
Bell Communications Research
Morristown, New Jersey 07960
${ }^{\text {b }}$ AT\&T Bell Laboratories
Murray Hill, New Jersey 07971

INTRODUCTION AND STATEMENT OF THE RESULTS

Let $X=\{1,2, \ldots, n\}$ and F be a family of subsets of X, that is $F \subset 2^{X}$. For $1 \leq i \leq j \leq n$ set $[i, j]=\{i, \ldots, j\}$. For integers k, m with $k \geq 2,0 \leq m \leq n$, we say that F has property $P(k, m)$ if any k pairwise disjoint members of F have union of size greater than m. Thus $P(k, n)$ means simply that F contains no k pairwise disjoint sets.

Let us write m in the form $m=k t-r$, where $1 \leq r \leq k$. Define

$$
F(n, k, m)=\{\mathbf{F} \subseteq X:|\mathbf{F}|+|\mathbf{F} \cap[1, r-1]| \geq t\} .
$$

It is easy to check that $F(n, m, k)$ has property $P(k, n)$. In fact, if F_{1}, \ldots, F_{k} are pairwise disjoint members of F, then

$$
\left|\mathbf{F}_{1} \cup \cdots \cup \mathbf{F}_{k}\right|=\left|\mathbf{F}_{1}\right|+\cdots+\left|\mathbf{F}_{k}\right| \geq k t-\sum_{1 \leq i \leq k}\left|\mathbf{F}_{i} \cap[1, r-1]\right| \geq k t-(r-1)
$$

holds.
Note that for $m=k t-1$ one has simply $F(n, k, m)=\{\mathbf{F} \subseteq X:|\mathbf{F}| \geq t\}$.
Theorem 1: Suppose $F \subset 2^{\boldsymbol{x}}, F$ has $P(k, m)$. Then $|F| \leq|F(n, k, m)|$ holds in each of the following cases.
(a) $m=k t-1$.
(b) $k=2, m=2 t-2$,
(c) k, r arbitrary, $n>2 m^{3}$. Moreover, $|F|=|F(n, k, m)|$ is possible only if F is isomorphic to $F(n, k, m)$.

Let us mention that the condition $n>n_{0}(m)$ cannot be completely removed in (c). In fact, Kleitman [8] proved that for $n=m=k t-k$ the maximum size of a family having $P(n, k, n)$ is attained by $F=\{F \subseteq X:|F \cap\{1,2, \ldots, n-1\}| \geq t-1\}$.

Let us also note that if (c) holds for some triple (n, k, m), then it also holds for all (n^{\prime}, k, m) with $n^{\prime}>n$-this will be clear from the inductive proof of (a) and (b).

The following old conjecture of Erdös is related to our problem.

Conjecture 1 [4]: Suppose $G \subset\binom{X}{t},|X| \geq r t$, and G contain no r pairwise disjoint sets. Then

$$
\begin{equation*}
|G| \leq \max \left\{\binom{n}{t}-\binom{n-r+1}{t},\binom{r t-1}{t}\right\} . \tag{1}
\end{equation*}
$$

The case $t=2$ of the preceding conjecture is a theorem of Erdös and Gallai [5]. Erdös [4] proved that for $n>n_{0}(r, t)(1)$ holds; moreover, if $|G|$ is maximal, then for some $R,|R|=r-1$ one has

$$
G=\left\{\mathbf{G} \in\binom{X}{t}: \mathbf{G} \cap R \neq \varnothing\right\} .
$$

The case $r=2$ is covered by the Erdös-Ko-Rado theorem (see the next section).
In the case $n=r t$ the inequality

$$
|G| \leq \frac{r-1}{r}\binom{r t}{t}=\binom{r t-1}{t}
$$

is easy to prove.
For the proof of (c) we need a strengthening of (1), which was obtained by Bollobás et al. [3]. First let us define the family

$$
\begin{aligned}
E_{\mathrm{I}}(n, r)= & \left\{\mathbf{E} \in\binom{X}{t}: \mathbf{E} \cap[1, r-2] \neq \varnothing\right\} \\
& \cup\left\{\mathbf{E} \in\binom{X}{t}:(r-1) \in \mathbf{E}, \mathbf{E} \cap[r, r+t-1] \neq \varnothing\right\} \cup\{[r, r+t-1]\}
\end{aligned}
$$

It is not hard to check that $E_{f}(n, r)$ contains no r pairwise disjoint members,

$$
\left|E_{t}(n, r)\right|=\binom{n}{t}-\binom{n-r+1}{t}-\binom{n-r-t+1}{t-1}+1 .
$$

Theorem 2 [3]: Suppose $F \subset\binom{X}{t}, F$ contains no r pairwise disjoint members, $|F|>\left|E_{t}(n, r)\right|$ and $n>2 t^{3}(r-1)$, then for some $R \subset\binom{X}{r-1}$ one has $F \cap R \neq \varnothing$ for all $\mathbf{F} \in \boldsymbol{F}$.

Let us call a family $F k$-times dense on Y if for all $Y_{0} \subset Y$ there exist F_{1}, F_{2}, \ldots, $\mathbf{F}_{k} \in F$, so that $\mathbf{F}_{i} \cap Y=Y_{0}$ for $1 \leq i \leq k, \mathbf{F}_{1}-Y, \ldots, \mathbf{F}_{k}-Y$ partition $X-Y$. For $0 \leq s \leq n$ let $d(n, k, s)$ denote the maximum size of F subject to the assumption that there is no s-element set Y on which F is k-times dense.

Also, set $f(n, k, m)=\max \left\{|F|: F \subset 2^{X}, F\right.$ has $\left.P(k, m)\right\}$.
Theorem 3:

$$
d(n, k, s)=f(n, k, n-s) .
$$

Remember that 2-times dense families were used by Alon and Milman [2] in connection with embedding problems of Banach spaces. They proved the case $k=2$ of our theorems. Actually Theorem 3 will be easily derived using the compression techniques of [1] and [7].

SHIFTING AND SOME RELATED RESULTS

One of the basic results in extremal set theory is the following.
Erdös-Ko-Rado Theorem [6]: Suppose $F \subset\binom{X}{l}, n \geq 2 l$ and $\mathbf{F} \cap \mathbf{F}^{\prime} \neq \varnothing$ holds for all $\mathbf{F}, \mathbf{F}^{\prime} \in F$. Then

$$
|F| \leq\binom{ n-1}{l-1} .
$$

For the proof of this result Erdös, Ko, and Rado introduced an important operation; the (i, j)-shift $S_{i j}$

$$
S_{i j}(F)=\left\{S_{i j}(\mathbf{F}): \mathbf{F} \in F\right\},
$$

where

$$
S_{i j}(\mathbf{F})= \begin{cases}(\mathbf{F}-\{j\}) \cup\{i\}: i \notin \mathbf{F}, & j \in \mathbf{F} \text { and }((\mathbf{F}-\{j\}) \cup\{i\}) \notin F \\ \mathbf{F}, & \text { otherwise } .\end{cases}
$$

Note that the (i, j)-shift just replaces element j by i in those sets that contain j but not i and for which the new set was not already in the family.

The importance of this operation lies in the following.
Proposition 1: Suppose F has property $P(k, m)$. Then $\left|S_{i j}(F)\right|=|F|$ and $S_{i j}(F)$ has $P(k, m)$, too.

Proof: Take pairwise disjoint sets $A_{1}, A_{2}, \ldots, A_{k} \in S_{i j}(F)$ and suppose for contradiction $\left|A_{1} \cup \cdots \cup A_{k}\right| \leq m$. Let B_{i} be the inverse image of A_{i}, that is $S_{i j}\left(B_{i}\right)=$ A_{i}. Since F has $P(k, m)$, we may assume $B_{1} \neq A_{1}$, and consequently $i \in A_{1}, j \notin A_{1}$, $i \notin B_{1}, j \in B_{1}$. Since the A_{1} are pairwise disjoint, $i \notin A_{l}$ for $l \geq 2$. Then $j \in B_{2}, i \notin B_{2}$ and $S_{i j}\left(B_{2}\right)=A_{2}$. Why? The only possibility is that $B_{2}^{*}=\left(B_{2}-\{j\}\right) \cup\{i\}$ is in F. However, $B_{1}, B_{2}^{*}, B_{3}, \ldots, B_{k}$ are pairwise disjoint sets in F with

$$
\left|B_{1} \cup B_{2}^{*} \cup B_{3} \cup \cdots \cup B_{k}\right|=\left|A_{1} \cup \cdots \cup A_{k}\right| \leq m,
$$

a contradiction.
During his recent visit to Japan, Erdös suggested that the following might be true.

Theorem 4: Suppose $n \geq(r+1) k-1,\binom{X}{r}=F_{1} \cup F_{2}$. Then either F_{1} or F_{2} contains k pairwise disjoint sets.

Proof: Suppose for contradiction neither F_{1} nor F_{2} contains k pairwise disjoint members. We may assume $F_{2}=\binom{X}{r}-F_{1}$. Applying the (i,j)-shift to F_{1} means to apply the $\left(j, i\right.$)-shift to $\binom{X}{r}-F_{1}$. Thus, by Proposition 1, we may apply the (i, j) shift repeatedly to F_{1} for all $1 \leq i<j \leq n$. Since $\sum_{F \in F_{1}} \sum_{i \in F} i$ is not increasing during this process and is strictly decreasing with each nontrivial shift, after finite time we get a family G_{1} (and thus $G_{2}=\binom{X}{r}-G_{1}$), which is shifted, that is, $S_{i}\left(G_{1}\right)=G_{1}$ holds for all $1 \leq i<j \leq n$. Moreover, neither G_{1} nor G_{2} contains k pairwise disjoint sets. However, the set $A_{0}=\{k, 2 k, \ldots, k\}$ must be either in G_{1} or in G_{2}. Consider now the possible cases:
(a) $A_{0} \in G_{1}$. Since G_{1} is shifted $A_{i}=\{k-i, \ldots, r k-i\} \in G_{1}$ follows for $i=0,1$, $\ldots, k-1$ (because $S_{l k-i, u k}(\mathbf{G})=\mathbf{G}$ for all $\mathbf{G} \in G_{1}, l=1, \ldots, r$). However, A_{0}, A_{1}, \ldots, A_{k-1} are pairwise disjoint, a contradiction.
(b) $A_{0} \in G_{2}$. Since G_{2} is shifted $A_{i}=\{k+i, 2 k+i, \ldots, r k+i\} \in G_{2}$ for $i=0,1$, $\ldots, k-1$. However, A_{0}, \ldots, A_{k-1} are pairwise disjoint, a contradiction.

Remark 1: Note that for $n=(r+1) k-2$, neither

$$
F_{1}=\binom{\{1, \ldots, k r-1\}}{r} \quad \text { nor } \quad F_{2}=\binom{X}{r}-F_{1}
$$

contain k pairwise disjoint sets. Thus Theorem 4 is the best possible.

PROOF OF THEOREM 1(A) AND (B)

We apply induction on n. The case $m=n$ was proved by Kleitman [8]. Thus, assume $m<n$. Suppose F has $P(k, m)$. In view of Proposition 1, just as in the proof of Theorem 4, we may suppose that F is shifted, that is, $S_{i j}(F)=F$ holds for all $1 \leq i<j \leq n$. Define

$$
\begin{aligned}
& F(n)=\{F \subset\{1,2, \ldots, n-1\}:(F \cup\{n\}) \in F\}, \\
& F(\bar{n})=\{F \subset\{1,2, \ldots, n-1\}: F \in F\} .
\end{aligned}
$$

Clearly $|F|=|F(n)|+|F(\bar{n})|$. Suppose $m=k t-1$ or $k=2$ and $m=2 t-2$. Note that if $F=F(n, k, m), n>m \geq k$, then $F(n)=F(n-1, k, n-k), F(\bar{n})=F(n-1$, k, m) hold. Thus the statement will follow from the induction hypothesis as soon as we show $F(\bar{n})$ has $P(k, m)$ and $F(n)$ has $P(k, m-k)$. The first is obvious. To prove the second, suppose for contradiction A_{1}, \ldots, A_{k} are pairwise disjoint sets in $F(n)$ with $\left|A_{1} \cup \cdots \cup A_{k}\right| \leq m-k$. Since $n>m$, we can find elements i_{1}, \ldots, i_{k} such that $\left(A_{1} \cup \cdots \cup A_{k}\right) \cap\left\{i_{1}, \ldots, i_{k}\right\}=\varnothing$. Since $S_{i}(F)=F$ for $l=1, \ldots, k, B_{l}=\left(A_{l} \cup\left\{i_{l}\right\}\right)$ $\in F$ follows. However, B_{1}, \ldots, B_{k} are pairwise disjoint and $\left|B_{1} \cup \cdots \cup B_{k}\right|=$ $\left|A_{1} \cup \cdots \cup A_{k}\right|+k \leq m$, a contradiction.

To prove the uniqueness of the extremal families apply induction again. From the proof we know $|F(n)|=|F(n-1, k, m-k)|, n-1>m-k$; thus, $F(n)=F(n-1$,
$k, m-k$). Since F is shifted, $(\mathbf{F} \cup\{j\}) \in F$ for all $\mathbf{F} \in F(n)$ and $1 \leq j \leq n$. This gives $F \supseteq F(n, k, m)$.

Thus we proved that for $n>m,|F|=|F(n, k, m)|$ implies $F=F(n, k, m)$ if F is shifted.

To conclude the proof of the uniqueness we must show that if G has $P(k, m)$, and for some $1 \leq i<j \leq n$ one has $S_{i j}(G)=F(n, k, m)$, then G is isomorphic to $F(n, k, m)$.

As for all

$$
\mathbf{G} \in G,\left|S_{i j}(\mathbf{G})\right|=|\mathbf{G}|,\binom{X}{l} \subset G \text { follows for } t \leq l \leq n
$$

This concludes the proof for the case (a). In the case (b) we have to deal with $G^{\prime}=\{\mathbf{G} \in G:|\mathbf{G}|=t-1\}$.

Again $S_{i j}(G)=F(n, k, m)$ implies

$$
\left|G^{\prime}\right|=\binom{n-1}{t-2}
$$

As G has $P(2,2 t-2), G^{\prime}$ contains no two disjoint sets. That is, \mathbf{G}^{\prime} is an extremal family for the Erdös-Ko-Rado theorem ($l=t-1, n>2 l$). Consequently, for some $x \in X$ one has

$$
G^{\prime}=\left\{\mathbf{G} \in\binom{X}{t-1}: x \in \mathbf{G}\right\},
$$

concluding the proof.
Remark 2: Actually, the same proof would work word for word in case (c) as well, except that the starting case ($m=n$) of the induction is missing.

Remark 3: We outline here an alternative proof of Theorem 1 for the case $m=k t-1$, which does not use shifting. Suppose F has property $P(k, m)$. If $A \in F$ is of size $j \leq m$, then A is contained in $\binom{n-j}{m-j} m$-subsets of X. It is easy to check that if $|F|>|F(n, k, t)|$ and $m=k t-1$, this implies that there is an m-subset of X containing more than $|F(m, k, t)|$ members of F. The result now follows from the starting case of the induction: $\boldsymbol{n}=\boldsymbol{m}$.

PROOF OF THEOREM 1(C)

We suppose again that F is shifted, $|F|$ is maximal, and F has property $P(k, m)$. Apply induction on m. Suppose $r<k$.

Claim 1. F has $P(r, r t-r)$.
Suppose for contradiction $A_{1}, \ldots, A_{r} \in F, A_{i} \cap A_{j}=\varnothing$ and $\left|A_{1} \cup \cdots \cup A_{r}\right| \leq$ $r t-r$. Using shiftedness and the maximality of $|F|$, we may assume $A_{1} \cup \cdots \cup$ $A_{r}=[1, r t-r]$. Define $F^{*}=\{\mathbf{F} \in F: \mathbf{F} \cap[1, r t-r]=\varnothing\}$. Then F^{*} has property
$P(k-r,(k-r)(t+1)-(k-r))$. By the induction hypothesis

$$
\begin{aligned}
\left|F^{*}\right| & \leq|F(n-(r t-r),(k-r),(k-r)(t+1)-(k-r))| \\
& <2^{n-r t+r}-\binom{n-r t+r-(k-r)}{t} .
\end{aligned}
$$

Consequently,

$$
|F|<2^{n}-\binom{n-r(t-2)-k}{t}<2^{n}-\binom{n}{t-1}<|F(n, k, m)|
$$

a contradiction for, for example, $n>2 m t$.
Thus F has $P(r, r t-r)$ and by the induction assumption $|F| \leq \mid F(n, r$, $r t-r)|=|F(n, k, k t-r)|$ follows, together with the uniqueness of the extremal configurations.

Finally we have to consider the case $r=k$, that is $m=k t-k$.
Claim 2: F has $P(n, k-j,(k-j)(t-1)-j)$ for all $1 \leq j<k$.
Proof: Suppose for contradiction $A_{1}, \ldots, A_{k-j} \in F$ are pairwise disjoint and A is a set of size $(k-j)(t-1)-j$ containing $A_{1} \cup \cdots \cup A_{k-j}$. Define

$$
F^{*}=\{\mathbf{F} \in F: \mathbf{F} \cap A=\varnothing\} .
$$

Then F^{*} has $P(n-|A|, j, j(t+1)-j)$, and this leads to a contradiction in the same way as in the case of Claim 1.

Let us define

$$
F^{(i)}=\{\mathbf{F} \in F:|\mathbf{F}|=i\}, f^{(i)}=\left|F^{(i)}\right| .
$$

In view of Claim 2 there are no $k-1$ pairwise disjoint members in $F^{(i)}$ for $i<t-1$. This yields

$$
f^{(i)}<(k-2)\binom{n-1}{i-1}
$$

And $|F| \geq|F(n, k, k t-k)|$ implies

$$
\sum_{i<t} f^{(i)} \geq\binom{ n}{t-1}-\binom{n-k+1}{t-1}
$$

These two inequalities lead to

$$
f^{(t-1)}>\left(k-\frac{3}{2}\right)\binom{n-1}{t-1}
$$

for, for example, $n>2 k(t-1)^{3}$. Since $F^{(t-1)}$ contains no k pairwise disjoint sets, from Theorem 2 and $n>2 m^{3}>2 k(t-1)^{3}$, it follows that there exists $T \subset X$, $|T|=k-1$, so that

$$
F^{(t-1)} \subset\left\{\mathbf{F} \in\binom{X}{t-1}: \mathbf{F} \cap T \neq \varnothing\right\} .
$$

Consequently, for each $x \in T$ there are at least $\frac{1}{2}\binom{n-1}{t-1}$ sets $F \in F^{(t-1)}$ with $\mathbf{F} \cap T=\{x\}$. In particular, there exist $k t$ sets $\mathbf{F}_{x}^{1}, \ldots, \mathbf{F}_{x}^{k t}$, so that $\mathbf{F}_{x}^{i} \cap T=\{x\}$ and $\mathbf{F}_{x}^{i} \cap \mathbf{F}_{x}^{j}=\{x\}$ for $1 \leq i \neq j \leq k t$.
Claim 3: For all $G \in F^{(t-i)}$ one has $|G \cap T| \geq i$.
Proof: The statement holds voidly for $i \leq 0$, and we just proved it for $i=1$. For $i \geq k$ Claim 2 implies $F^{(t-i)}=\varnothing$. Thus we may assume $2 \leq i<k$. Suppose for contradiction $\mathbf{G} \in F^{(t-i)},|\mathbf{G} \cap T|<i$. Let x_{1}, \ldots, x_{k-i} be distinct elements of $T-\mathbf{G}$. We want to find successively sets $\mathbf{F}_{1}, \ldots, \mathbf{F}_{k-i}$ so that $\mathbf{G}, \mathbf{F}_{1}, \ldots, \mathbf{F}_{k-i}$ are pairwise disjoint, $\mathbf{F}_{j} \in F^{(t-1)}, \mathbf{F}_{j} \cap T=\left\{x_{j}\right\}, j=1, \ldots, k-i$.

Suppose $\mathbf{F}_{1}, \ldots, \mathbf{F}_{j-1}$ were already chosen, $j \leq k-i$. Then $\mid \mathbf{G} \cup \mathbf{F}_{1} \cup \cdots \cup$ $\mathbf{F}_{j-1} \mid<j t$; therefore, we can choose one out of the $k t$ sets $\mathbf{F}_{x j}^{1}, \ldots, \mathbf{F}_{x j}^{k t}$ so that it is disjoint from $\mathbf{G} \cup \mathbf{F}_{1} \cup \cdots \cup \mathbf{F}_{j-1}$.

However, $\quad\left|\mathbf{G} \cup \mathbf{F}_{1} \cup \cdots \cup \mathbf{F}_{k-i}\right|=(t-i)+(k-i)(t-1)=(k-i+1) t-k$, contradicting Claim 2.

Now the proof is finished because, by maximality, we must have

$$
F=\{\mathbf{F} \subseteq X:|\mathbf{F} \cap T|+|\mathbf{F}| \geq t\} .
$$

A REDUCTION LEMMA FOR k-TIMES DENSE FAMILIES

For $F \subset 2^{X}$ and $i \in X$, let us define the following shifting-type operation C_{i} :

$$
C(F)=\left\{C_{i}(F): \mathbf{F} \in F\right\}
$$

where

$$
C_{i}(F)= \begin{cases}\mathbf{F} \cup\{i\}, & \text { if } i \in \mathbf{F},(\mathbf{F} \cup\{i\}) \notin F \\ \mathbf{F}, & \text { otherwise } .\end{cases}
$$

Lemma 1: Suppose F is a family that is not k-times dense on any s-element subset of X. Then $C_{i}(F)$ has the same property as well.

Proof: Suppose for contradiction that $C_{i}(F)$ is k-times dense on $S \in\binom{X}{s}$. Let T be an arbitrary subset of S. We want to show that there exist $\mathbf{F}_{1}(T), \ldots, F_{k}(T) \in F$ so that $\mathrm{F}_{\mathrm{j}}(T) \cap S=T$ and the sets $\mathrm{F}_{j}(T)-S, j=1, \ldots, k$ partition $X-S$.

Suppose first $i \notin S$ and let $G_{1}(T), \ldots, G_{k}(T) \in C_{i}(F)$ satisfy the preceding assumptions. If $\mathbf{G}_{f}(T) \in F$ for $j=1, \ldots, k$, then we have nothing to prove. Suppose $\mathbf{G}_{1}(T) \notin$ F. Then $i \in \mathbf{G}_{1}(T), F_{1}(T)=\mathbf{G}_{1}(T)-\{i\}$ is in F. Consider $\mathbf{G}_{2}(T) \in C_{i}(F)$. How could it happen that $i \notin \mathbf{G}_{\mathbf{2}}(T)$? The only explanation is that $\mathbf{F}_{\mathbf{2}}(T)=\mathbf{G}_{\mathbf{2}}(T) \cup\{i\}$ is also in F. Now choosing $F_{f}(T)=G_{f}(T)$ for the remaining values $j=3, \ldots, k$ we are done.

Suppose next $i \in S$ and set $\bar{T}=T-\{i\}$.
As $C_{i}(F)$ is k-times dense on S, there exist $G_{j}(\tilde{T}) \in C_{i}(F), j=1, \ldots, k$, with $G_{\mathcal{A}}(\tilde{T}) \cap S=\tilde{T}$ and the sets $G_{j}(\tilde{T})-S$ forming a partition of $X-S$.

Since $i \notin \tilde{T}$, we infer that both $\mathbf{G}_{j}(\tilde{T})$ and $\mathbf{G}_{j}(\tilde{T}) \cup\{i\}$ are in F for $j=1, \ldots, k$. This completes the proof of the lemma.

Proof of Theorem 3: Suppose $F \subset 2^{X}, F$ is not k-times dense on any $S \in\binom{X}{s}$, $|F|=d(n, k, s)$. Repeatedly applying the operation C_{i}, for $i=1, \ldots, n$, to F, leads to a family G that is not k-times dense on any $S \in\binom{X}{S}$ either and that satisfies $C_{i}(G)=G$, that is, G is a monotone family ($\mathbf{G} \in G, \mathbf{G} \subset H \subseteq X$, imply $H \in G$). We claim that G has $P(n, k, n-s)$. Suppose the contrary, that is, there exist pairwise disjoint sets $\mathbf{G}_{1}, \ldots, \mathbf{G}_{k} \in G$ with $\left|\mathbf{G}_{1} \cup \cdots \cup \mathbf{G}_{k}\right| \leq n-s$. Let S be an arbitrary s-element subset of $X-\left(\mathbf{G}_{1} \cup \cdots \cup \mathbf{G}_{k}\right)$.

Since G is monotone, for every $T \subseteq S$, the k-sets $\mathbf{G}_{1} \cup T, G_{2} \cup T, \ldots$, $\mathbf{G}_{k-1} \cup T$ and $\left(X-\left(\mathbf{G}_{1} \cup \cdots \cup \mathbf{G}_{k-1}\right)\right) \cup T$ are in G, showing that G is k-times dense on S.

As $|G|=|F|,|F|=d(n, k, s) \leq f(n, k, n-s)$ follows. The opposite inequality is trivial; if F has $P(n, k, n-s), S \in\binom{X}{s}$, then consider $T=\varnothing$ to show that F is not k-times dense on S.

REFERENCES

1. Alon, N. 1983. On the density of sets of vectors. Discrete Math. 46: 199-202.
2. Alon, N. \& V. D. Milman. 1983. Embedding of l_{∞}^{k} in finite dimensional Banach spaces. Israel J. Math. 45: 265-280.
3. Bollobás, B., D. E. Daykin \& P. Erdös. 1976. Sets of independent edges of a hypergraph. Quart. J. Math. Oxford 21: 25-32.
4. Erdös, P. 1965. A problem of independent r-tuples. Ann. Univ. Budapest 8: 93-95.
5. Erdös, P. \& T. Gallai. 1959. On the maximal paths and circuits of graphs. Acta Math. Acad. Sci. Hung. 10: 337-357.
6. Erdös, P., C. Ko \& R. Rado. 1961. Intersection theorems for systems of finite sets. Quart. J. Math. Oxford 12: 313-320.
7. Frankl, P. 1983. On the trace of finite sets. J. Comb. Theory A 34: 41-45.
8. Kleitman, D. J. 1968. Maximal number of subsets of a finite set no k of which are pairwise disjoint. J. Comb. Theory A 5: 157-163.
