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INTRODUCTION AND STATEMENT OF THE RESULTS 

Let X = {1, 2, . . . , n} and F be a family of subsets of X, that is F c 2x. For 
1 I: i I: j I n set Ci.17 = { i ,  ..., j } .  For integers k, m with k 2 2, 0 I m I n, we say 
that F has property P(k, m) if any k pairwise disjoint members of F have union of 
size greater than m. Thus P(k, n) means simply that F contains no k pairwise disjoint 
sets. 

Let us write m in the form m = kt - r, where 1 I r I k. Define 

F(n, k ,  m) = {F E X: I F I + I F n [ 1, r - 11 I 2 t ) .  

It is easy to check that F(n, m, k) has property P(k, n). In fact, if F,, ..., Fk are 

IFi n [l, r - 111 r k t  -(r  - 1) 

pairwise disjoint members of F, then 

IF, u ... u FJ = lFll +... + IFkI 2 kt  - 

holds. 
l S i S k  

Note that for m = kt - 1 one has simply F(n, k, m) = {F c X :  IF I 2 t } .  

THEOREM 1: Suppose F c 2x, F has P(k, m). Then 1 F (  I: IF(n, k, m) I holds in 
each of the following cases. 

(a) m = kt - 1. 
(b) k = 2, m = 2t - 2, 
(c) k, r arbitrary, n > 2m3. Moreover, I F I = I F(n, k ,  m) I is possible only if F is 

Let us mention that the condition n > n,(m) cannot be completely removed in 
(c). In fact, Kleitman [ S ]  proved that for n = m = kt - k the maximum size of a 
family having P(n, k, n) is attained by F = (F E X :  IF n { 1, 2, . . . , n - l} I 2 t - l}. 

Let us also note that if (c) holds for some triple (n, k, m), then it also holds for all 
(n', k ,  m) with n' > n-this will be clear from the inductive proof of (a) and (b). 

The following old conjecture of Erdos is related to our problem. 

isomorphic to F(n, k, m). 

9 



10 ANNALS NEW YORK ACADEMY OF SCIENCES 

CONJEC~URE 1 [ 4 ] :  Suppose G c , I X 1 2 rt, and G contin no r pairwise 

disjoint sets. Then 

I GI max {( :) - (' - i- '), ( r t  ')I. 
The case t = 2 of the preceding conjecture is a theorem of Erdos and Gallai [ S ] .  

Erdos [4] proved that for n > no(r, t )  (1) holds; moreover, if I G 1 is maximal, then for 
some R, IRI = r - 1 one has 

G =  ( G E ( ~ ) :  t G n R Z a}. 

The case r = 2 is covered by the Erdos-Ko-Rado theorem (see the next section). 
In the case n = rt the inequality 

lGIS--(J=( r - 1  rt r t - 1  ) 
is easy to prove. 

Bollobh et al. [3]. First let us define the family 
For the proof of (c) we need a strengthening of (l), which was obtained by 

E , h  r) = (. E (:): E n [l, I - 23 # .> 
u (. c (t): (r - 1) E E, E n [r,  r + t - 11 + 0) u { [ r ,  r + t - 111. 

It is not hard to check that &(n, r) contains no r pairwise disjoint members, 

) + I .  

THEOREM 2 [ 3 ] :  Suppose F c , F contains no I pairwise disjoint members, 

( r  1) one has F n R # 0 I FI > IEt(n, r)l and n > 2t3(r - l), then for some R c 

for all F E F.  

(3 
Let us call a family F k-times dense on Y if for all Yo c Y there exist F,, F,, . . . , 

F, E F , s o  that Fi n Y = Yo for 1 < i I k,F, - Y ,  ..., F, - Y partition X - Y. For 
0 I s n let d(n, k, s) denote the maximum size of F subject to the assumption that 
there is no s-element set Y on which F is k-times dense. 

Also, setf(n, k, m) = max{ [ F I: F c 2x, F has P(k, m)). 

THEOREM 3: 

d(n, k, s) = f ( n ,  k, n - s). 
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Remember that 2-times dense families were used by Alon and Milman [Z] in 
connection with embedding problems of Banach spaces. They proved the case k = 2 
of our theorems. Actually Theorem 3 will be easily derived using the compression 
techniques of [l] and [7J 

SHIFTING AND SOME RELATED RESULTS 

One of the basic results in extremal set theory is the following. 

ERD~S-KO-RADO THEOREM [S]: Suppose F c , n 2 21 and F n F # 0 holds 

for all F, F E F. Then 

For the proof of this result Erdos, KO, and Rado introduced an important oper- 
ation; the ( i ,  j)-shift S ,  

SiAF) = {S,AF): F E F), 
where 

u { i } :  i # F, j E F and ((F - {j}) u {i}) # F 
otherwise. Sij4F) = 

Note that the (i, jbshift just replaces element j by i in those sets that contain j 

The importance of this operation lies in the following. 

PROPOSITION 1 : Suppose F has property P(k, m). Then I SiAF) I = I F I and S J F )  

Proof: Take pairwise disjoint sets A,, A,, . . . , A, E Si,(F) and suppose for con- 
tradiction IA, u ... u A, I I m. Let B, be the inverse image of A,, that is &,@,) = 
A,. Since F has P(k, m), we may assume B ,  # A,, and consequently i E A , , j  $ A, ,  
i 4 B,,  j E Bl. Since the A, are pairwise disjoint, i if A, for 1 2 2. Then j E B,, i if B, 
and SiAB,) = A,. Why? The only possibility is that Bf = ( B ,  - {j}) u (i} is in F. 
However, B, ,  Bf , B ,  , . . . , B, are pairwise disjoint sets in F with 

IB, u Bf u B ,  u . . .  u B,I = IA, u ... u A,I 

but not i and for which the new set was not already in the family. 

has P(k, m), too. 

m, 

a contradiction. 

During his recent visit to Japan, Erdos suggested that the following might be 
true. 

THEOREM 4: Suppose n 2 (r + 1)k - 1, = F, u F,. Then either F, or F, 

contains k pairwise disjoint sets. 
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Proof: Suppose for contradiction neither F, nor F, contains k pairwise disjoint 

- F,. Applying the ( i ,  j)-shift to F ,  means to members. We may assume F, = 

apply the f j ,  i)-shift to - F,. Thus, by Proposition 1, we may apply the (i, j ) -  

shift repeatedly to F, for all 1 5 i < j 5 n. Since EFEF, ZiaF i is not increasing 
during this process and is strictly decreasing with each nontrivial shift, after finite 

time we get a family G, (and thus G, = - G,) ,  which is shifted, that is, 

Si,(G,) = G ,  holds for all 1 5 i < j 5 n. Moreover, neither GI nor G, contains k 
pairwise disjoint sets. However, the set A, = {k,  2k, . . . , k }  must be either in G, or in 
G ,  . Consider now the possible cases : 

(a) A, E G,. Since G, is shifted Ai = { k  - i, . .., rk - i} E G, follows for i = 0, 1, 
. . . , k - 1 (because S,,-, lk(G) = G for all G E G,, 1 = 1, . . . . , r). However, A, ,  
A,, . . . , A,- , are pairwise disjoint, a contradiction. 

(b) A, E G,. Since G ,  is shifted Ai = {k + i, 2k + i, .. ., rk + i} E G, for i = 0, 1, 
. . . , k - 1. However, A0 , . . . , Ak- are pairwise disjoint, a contradiction. 

(3 
(3 

(3 

0 

REMARK 1 : Note that for n = (r + l)k - 2, neither 

contain k pairwise disjoint sets. Thus Theorem 4 is the best possible. 

PROOF OF THEOREM 1(A) AND (B) 

We apply induction on n. The case rn = n was proved by Kleitman [8]. Thus, 
assume rn < n. Suppose F has P(k, rn). In view of Proposition 1, just as in the proof 
of Theorem 4, we may suppose that F is shifted, that is, S,(F) = F holds for all 
1 I i < j 2 n. Define 

F(n) = {F c 11, 2, ..., n - 1): (F u {n}) E F } ,  

F(ii) = {F c {l, 2, ..., n - I}: F E F ) .  

Clearly(FI=IF(n)[+IF(ii)I.Supposern=kt-l o r k = 2 a n d m = 2 t - 2 . N o t e  
that if F = F(n, k, rn), n > rn 2 k,  then F(n) = F(n - 1, k,  n - k), F(ii) = F(n - 1, 
k, rn) hold. Thus the statement will follow from the induction hypothesis as soon as 
we show F(ii) has P(k ,  m) and F(n) has P(k, rn - k). The first is obvious. To prove the 
second, suppose for contradiction A,, . . . , A, are pairwise disjoint sets in F(n) with 
I A, u . . . u A,I rn - k. Since n > rn, we can find elements i,, . . . , ik such that 
(A, u . . . u A& n {i,, . . . , ik} = 0. Since SJF)  = F for I = 1, . . . , k,  B, = (A,  u { i l } )  
E F follows. However, B,, ..., B, are pairwise disjoint and IB, u . . .  u B,I = 
I A ,  u . . . u A,  I + k I rn, a contradiction. 

To prove the uniqueness of the extremal families apply induction again. From the 
proof we know I F(n) I = I F(n - 1, k, m - k )  1, n - 1 > m - k ;  thus, F(n) = F(n - 1, 
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k, m - k). Since F is shifted, (F u { j } )  E F for all F E F(n) and 1 < j  I n. This gives 
F 2 F(n, k, m). 

Thus we proved that for n > m, IF1 = IF(n, k, m)l implies F = F(n, k, m) if F is 
shifted. 

To conclude the proof of the uniqueness we must show that if G has P(k, m), and 
for some 1 i < j < n one has S,(G) = F(n, k, m), then G is isomorphic to F(n, k, m). 

As for all 

G E G, ISijG)I = IGI, c G follows for t < I I n. (3 
This concludes the proof for the case (a). In the case (b) we have to deal with 
G =  { G E  G :  IGI = t - 1). 

Again S,,(G) = F(n, k, m) implies 

I G I = (" - 1). 
t - 2  

As G has P(2, 2t - 2), G contains no two disjoint sets. Thqt is, G is an extremal 
family for the Erdos-Ko-Rado theorem (I = t - 1, n > 21). Consequently, for some 
x E X one has 

concluding the proof. 

REMARK 2 :  Actually, the same proof would work word for word in case (c) as 
well, except that the starting case (m = n) of the induction is missing. 

REMARK 3: We outline here an alternative proof of Theorem 1 for the case 
m = kt - 1, which does not use shifting. Suppose F has property P(k, m). If A E F is 

of size j I m, then A is contained in ( z  1:) m-subsets of  X. It is easy to check that 

if IF I > I F(n, k, t) I and m = kt - 1, this implies that there is an m-subset of X con- 
taining more than I F(m, k, t )  I members of F. The result now follows from the start- 
ing case of the induction: n = m. 

PROOF OF THEOREM 1(C) 

We suppose again that F is shifted, I F I is maximal, and F has property P(k, m). 
Apply induction on m. Suppose r < k. 

CLAIM 1. F has f i r ,  rt - r). 

Suppose for contradiction A,, . . . , A, E F, Ai n Aj  = 0 and I A, u . * .  uA,  I < 
rt - r. Using shiftedness and the maximality of IF I ,  we may assume A, u .. . u 
A, = [l, rt - r ] .  Define F* = {F E F :  F n [l, rt - r]  = 0). Then F* has property 
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P(k - r, ( k  - rxt + 1) - (k - r)). By the induction hypothesis 

IF* 1 5 1 F(n - (rt - r), ( k  - r), ( k  - r)(t + 1) - ( k  - r)) I 

Consequently, 

l F l < 2 " -  ( n - r ( t - 2 ) - k )  < 2" - ( n ) < I F(n, k, m) I, 
t t - 1  

a contradiction for, for example, n > 2mt. 
Thus F has P(r, rt - r) and by the induction assumption I F J  I F(n, r, 

rt - r) I = I F(n, k, kt - r )  I follows, together with the uniqueness of the extremal con- 
figurations. 

Finally we have to consider the case r = k, that is m = kt - k .  

CLAIM 2: F has P(n, k -j, (k  -jMt - 1) -j) for all 1 I j < k. 

Proof: Suppose for contradiction A,, . . . , A,- E F are pairwise disjoint and A is 
a set of size (k  -jMt - 1) - j containing A, u . . .  u A , - j .  Define 

F* = {F E F :  F n A = 0). 
Then F* has P(n - I A 1, j ,  j ( t  + 1 )  - j ) ,  and this leads to a contradiction in the same 
way as in the case of Claim 1. 0 

Let us define 

F(') = {F E F :  IF I = j } ,  f ( i )  = IF(') 1 , 

In view of Claim 2 there are no k - 1 pairwise disjoint members in F(') for i < t - 1. 
This yields 

And IF1 2 IF(n, k,  kt - k)l implies 

i < t  t - 1  t - 1  

These two inequalities lead to 

for, for example, n > 2 4 t  - 1)'. Since P-') contains no k pairwise disjoint sets, 
from Theorem 2 and n > 2m' > 2 4  - I)', it follows that there exists T c X, 
I TI = k - 1, so that 

r ' - ' ) c ( F t (  t - 1  ) : F n  T f  a]. 
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Consequently, for each x E T there are at least - (" - ') sets F E F('-') with 

F n T = {x}. In particular, there exist kt sets F: , . . . , FZ, so that FI n T = {x} and 
FL n F', = {x} for 1 5 i # j 

CLAIM 3: For all G E F"-"one has IG  n TI 2 i. 

Proof: The statement holds voidly for i I 0, and we just proved it for i = 1. For 
i 2 k Claim 2 implies F(r-i) = 0. Thus we may assume 2 I i < k. Suppose for con- 
tradiction G E F('-i), I G n TI < i. Let x,, . . . , xtWi be distinct elements of T - G. 
We want to find successively sets F,, . . . , F,-i so that G, F,, . . . , F,-i are pairwise 
disjoint, F, E F('-'), Fj n T = { x j } , j  = 1,. . ., k - i. 

Suppose F,, . . . , Fj- , were already chosen, j k - i. Then I G u F, u . . . u 
Fj- I < j t ;  therefore, we can choose one out of the kt sets Ftj, . . . , FZ so that it is 
disjoint from G u F, u ... u Fj-l. 

) G  u Fl u ... u Fk-il = (t - i )  + ( k  - i)(t - l ) = ( k -  i + 1)t - k, 
contradicting Claim 2. 

2 t - 1  

kt. 

However, 

Now the proof is finished because, by maximality, we must have 

F = { F z X : ) F n  TI+IFI>t} .  

A REDUCTION LEMMA FOR k-TIMEs DENSE FAMILIES 

For F c 2' and i E X, let us define the following shifting-type operation Ci: 

CXF) = {CXF): F E F }  

where 

cLF) = {;,u { i } ,  
if i E F, (F LJ { i } )  $ F 
otherwise. 

LEMMA 1 : Suppose F is a family that is not k-times dense on any s-element subset of 
X. Then CXF) has the same property as well. 

Proof: Suppose for contradiction that CXF) is k-times dense on S E . Let T 

be an arbitrary subset of S. We want to show that there exist F,(T), . . . , Fk(T) E F 
so that F,(T) n S = T and the sets F,(T) - S, j = 1, . . . , k partition X - S. 

Suppose first i 4 S and let G,(T), . . . , G,(T) E CXF) satisfy the preceding assump- 
tions. If GAT) E F for j = 1, . . . , k, then we have nothing to prove. Suppose G,(T) $ 
F. Then i E G,(T),  F,(T) = G,(7') - {i) is in F. Consider G,(T) E CXF). How could 
it happen that i 4 G,(T)? The only explanation is that F,(T) = G,(T) u { i }  is also 
in F. Now choosing FAT) = G T) for the remaining values j = 3, . . . , k we are done. 

As CXF) is k-times dense on S, there exist G,(n E CXF), j = 1, ..., k, with 

(3 

Suppose next i E S and set 4 = T - {i}. 

G,@) n S = Tand the sets GA.4) - S forming a partition of X - S. 
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Since i 4 we infer that both GAn and GAQ u {i} are in F for j = 1, . . . , k. 
This completes the proof of the lemma. 

Proof of Theorem 3: Suppose F c ZX, F is not k-times dense on any S E , 

I F I = d(n, k, s). Repeatedly applying the operation Ci, for i = 1, . . . , n, to F, leads to 

a family G that is not k-times dense on any S E either and that satisfies 

CAG) = G, that is, G is a monotone family (G E G, G c H E X, imply H E G). We 
claim that G has P(n, k, n - s). Suppose the contrary, that is, there exist pairwise 
disjoint sets GI, . . . , G, E G with 1 G ,  u . . . u G, I 5 n - s. Let S be an arbitrary 
s-element subset of X - (GI u . . . u GJ. 

Since G is monotone, for every T E S, the k-sets GI u T, G ,  u T ,  ..., 
G k - l  u T and (X -(GI u ... u Gk-l ) )  u T are in G, showing that G is k-times 
dense on S. 

As I GI = 1 F 1, 1 F 1 = d(n, k, s) < f ( n ,  k, n - s) follows. The opposite inequality is 

(3 
(3 

trivial; if F has P(n, k, n - s), S E , then consider T = 0 to show that F is not 

k-times dense on S. 
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